Thermal Pore Pressure Coupled Response (FLAC2D)

Example Application

The project file for this example may be viewed/run in FLAC2D.[1] The main data file used is shown at the end of this example.

How To Read and Use Examples

Two simple examples are provided to illustrate a coupled thermal fluid-flow mechanical stress response. Both examples involve a single element that is saturated and undrained. In the first example the element is unconfined, and in the second the element is totally confined. The temperature in both cases is increased by a thermal heat source.

For the unconfined test, the element expands and the pore pressure decreases. The total mean stress remains at zero because the element boundaries are free.

The analytical solution for volumetric strain for the unconfined case is

(1)\[\Delta \epsilon _v\ =\ {{\alpha\ M \ \beta +\ 3K\ \alpha_t\ } \over {K +\ \alpha^2 \ M}} \Delta T\]

and for pore pressure change is

(2)\[\Delta p\ =\ {K \over {K + \alpha^2 M}}\ (- 3 \alpha\ \alpha_t +\ \beta ) \Delta T\]

where:

\(\alpha\) = Biot coefficient;

\(M\) = Biot modulus;

\(\alpha_t\) = drained linear thermal-expansion coefficient;

\(\beta\) = undrained volumetric thermal-expansion coefficient;

\(K\) = drained bulk modulus; and

\(\Delta T\) = temperature change.

In the confined test, the volume change is zero and the pore pressure increases due to the temperature increase. The total mean stress increases in this case because the element boundaries are fixed.

The analytical solution for total mean stress change is

(3)\[\Delta \sigma\ = -(3K \alpha_t +\ \alpha M \beta) \Delta T\]

and for pore-pressure change is

(4)\[\Delta p\ =\ M \beta \Delta T\]

The parameters and their dimensionless values are:

density (\(\rho\))

1

bulk modulus (\(K\))

0.67

shear modulus (\(G\))

0.4

porosity (\(n\))

0.5

Biot modulus (\(M\))

4

Biot coefficient (\(\alpha\))

1

linear thermal-expansion coefficient (\(\alpha_t\))

3

undrained volumetric thermal-expansion coefficient (\(\beta\))

5

thermal conductivity (\(k\))

1

specific heat (\(C_p\))

1

temperature increment (\(\Delta T\))

0.4

For the unconfined test, the calculated values for \(\Delta \epsilon _v\) \((\Delta \epsilon _v = \Delta \epsilon _{11} + \Delta \epsilon _{22} + \Delta \epsilon _{33})\) and \(\Delta p\) from Equations (1) and (2) are 2.230 and -0.918, respectively. The results from FLAC3D agree with these values (< 0.01% difference).

For the confined test, the calculated values for the change in total mean stress, \(\Delta \sigma_{ii}\), and pore pressure, \(\Delta P\), are -10.412 and 8.000, respectively. Both values are within less than 0.01% of the analytical values from Equations (3) and (4).

Data File

model new
model title 'Undrained thermo-poro-elastic unconfined and confined tests'
program call 'fishFunctions' suppress
; ------- main computation -------
zone create quadrilateral size 1 1 point 1 (1,0) point 2 (0,1) point 3 (1,1)
; --- mechanical model
model large-strain off
zone cmodel assign elastic
zone property density [c_dens] bulk [c_k] shear [c_g]
; --- fluid flow model
model configure fluid-flow
zone fluid property pore-pressure-generation on
zone fluid property undrained-thermal-coefficient [c_u_thc]
zone fluid property biot-modulus [c_biom]
; --- thermal model 
model configure thermal
zone thermal property conductivity [c_cond] specific-heat [c_cv] ...
             expansion [c_thex]
;
zone apply source 1. range position-y -1 2
model save 'tpe_cpl-ini'

; --- unconfined test
; settings
model thermal timestep fix 8e-4
; test
model solve-thermal cycles 500
model solve-static cycles 500
[ana_sol(0)]
model save 'tpe_cpl-unconfined'
fish list [v_strain] [delta_p]
fish list [err_vol] [err_pp]

; --- confined test
model restore 'tpe_cpl-ini'
; settings
zone gridpoint fix velocity ; <--- apply confinement
model thermal timestep fix 8e-4
; test 
model solve-thermal cycles 500
model solve-static cycles 500
[ana_sol(1)]
model save 'tpe_cpl-confined'
fish list [delta_sxx] [delta_p]
fish list [err_sxx] [err_pp]

program return

Endnote